
For each individual job we have a “bucket,” which we assume starts out empty (though if there is 
reason we can allow it to start out occupied). We tell certain events to add atoms to the bucket:

on started apache add have_apache
on stopped apache add !have_apache
on started tomcat add have_tomcat
on stopped tomcat add !have_tomcat

So after started apache had occured, the bucket would be {have_apache}. Note that the bucket is a set, 
so two of the same atom cannot be added. After another started apache event we would still have 
{have_apache}.

We then define a series of “decay rules” which cause certain substitutions to be made on the bucket 
every time an atom is added.

{!have_apache, have_apache} => {}
{!have_tomcat, have_tomcat} => {}
{start, have_tomcat} => {start}
{start, have_apache} => {start}
{start, !have_apache} => {have_tomcat}
{start, !have_tomcat} => {have_apache}
{have_apache, have_tomcat} => {start}
{!have_apache} => {}
{!have_tomcat} => {}

Each line simply states “Whenever everything on the left can be found in the bucket, remove it and add 
everything on the right.” We assume that the job should be running whenever the “start” atom is in the 
bucket, so we start the job when it is added and stop it when it is removed.

The rules are run in sequence, and repeated until all of them run through without altering the contents 
of the bucket.

You may notice that this definition is a little verbose. However, there are many common patterns that 
emerge here, which means we can install some syntactic sugar to clean things up a bit. For example, 
the atoms beginning with ! Are assumed to be the inverse of those that do not. The current ruleset treats 
them the same as ordinary atoms, but if we formalize these “anti-atoms” we can remove the first two 
and last two rules and simply assume them to be implicit.

The rules we have left can be further optimized. The “start” atom in this context is essentially 
equivalent to having both “have_apache” and “have_tomcat” being present at the same time. This 
situation is common enough, and easy enough to define, that we can simply add an operator for it:

{start} <=> {have_apache, have_tomcat}

Yielding us one rule for the job definition.


